EECS192 Oral Report

Thiti Khomin
Nareauphol Liu
guinea wheek

Berkeley

UNIVERSITY OF CALIFORNIA

Presentation Overview

Outline

- Project overview

- Vehicle Hardware and Embedded Peripherals
- Line Sensor Algorithm

- Software

- Controls

- Lessons learned

- Roles and Contributions

Berkeley

UNIVERSITY OF CALIFORNIA

Hardware Block Diagram/QOverview

Sensors EnCOder

Encoder Count

MCU (ESP32)

Input-Signal TA
Brushed
Motor % g
ﬂ ' b DC Motor
Outputs Speed Output

Berkeley

UNIVERSITY OF CALIFORNIA

Encoder Line Scan Track Image (Input,
Wheel (Input) B TSL1401CL)

MCU

RC Car
Battery

Qo)

Line-array
MCU
) Battery
Input-Signal 1B

+7.2V Servo

Steering Output

Car Photos

Berkeley

UNIVERSITY OF CALIFORNIA

Velocity Encoder Design - Mount

- Initial mounting plan:
- Mount encoder disc to inside of wheel, mount sensor with tape
- Would have to deal with car suspension, generally bad idea
- Final mounting plan:
- Mount encoder disc to drive gear with superglue, mount sensor with tape
- Much easier to implement/more stable
- Tape blocks out excess light (common issue)

e \ 4

Y

Encoder
) | ‘behind tape

Breley

UNIVERSITY OF CALIFORNIA

Velocity Encoder Design - Shielding

Excess light == skipped counts
Solution: shielding!

IIIIIIIIIIIIIIIIIIIIII

Velocity Encoder Design - Disc

- Encoder discs:
- Hand cut and shaded
- Superglued to main drive gear
- Tested variety of encoder disc designs:
- 8-disc
- Too few counts
- 12-disc
- Perfect compromise
- le-disc
- Sections too small

Left to right: 8-disc, 12-disc, 16-disc

Berkeley

UNIVERSITY OF CALIFORNIA

Velocity Sensor - Results

- Hardware was good!
- Most reliable hardware part of project
- Software was lacking
- 10-20 ms too short of a period
- Only ~25-50 cm/s velocity resolution
- Time/frequency tradeoff (thanks Nyquist)
- Future work: use GPIO interrupts + GPTIMER peripheral timing based
approach, to measure time between ticks

Berkeley

UNIVERSITY OF CALIFORNIA

Velocity Sensor - Reading

Used sampling approach

- Every 20 ms, check pulse counter value

- # of cycles / sample converted to cm/s
Timer subsystem used for sampling interrupts
Pulse counter for encoder counts
Velocity passed through 3 point median filter

. Total
Timer counts Edge

interrupt (S i W counts
Timer ampiing PCNT Sensor
L task J
Median .
Filter J— Velocity

Berkeley

UNIVERSITY OF CALIFORNIA

Line sensor - Mounting

- Used provided mount at highest point and angle
available
- Mount is unfortunately quite flimsy
- Needs constant checking!

Berkeley

Other misc onboard hardware

- Timers:
- Derivative error calculation
- Telemetry logging
- Busywait loops in line sensor reading
- MCPWM:
- Drives the ESC and servo inputs
- Servo is powered from ESC
- Wifi peripherals:
- Communications between driver station and robot

Berkeley

UNIVERSITY OF CALIFORNIA

Line sensor - Reading Data

- Control signals (S, CLK) bit-banged through

GPIO
- (TSL1401CL has ADC “SPI"” protocol with exposure
dependent on clock frequency)

- Data read through ADC
- Initial strategy:
- Fire SI, clock and read 128 times, repeat
- Fixed exposure time of ~2ms
- Doesn’'t work outdoors
- Final strategy:
- Fire Sl twice, read the 2nd time __i
- Fast clocking for exposure + discard H
garbage, then read out data e osure
- Can do exposure times of <256 ns
- Works outdoors*

tronty T shade, motdirect surtight) 1.7ms 3.8 ms

voltage

Old exposure
~2ms

voltage

Berkeley

UNIVERSITY OF CALIFORNIA

Line detection - Thresholding

- 85% of maximum detected value AND greater than fixed min cutoff
- Cutoff is usually zero in practice
- Simple yet effective

Berkeley

NIVERSITY OF CALIFORNIA

Line detection - Crossing Rejection

- Line algorithm organizes thresholded segments into “blobs”
- Blob closest to previous line is likely the line
- Center of blob is the line
- Blob position used for stop detection
- If no blobs, then guess the last position
- Blobs have a minimum width

Linescan pixels

Berkeley

UNIVERSITY OF CALIFORNIA

Time (each slice is 50ms)

Block Diagram for Software

Physical . Planning and . Data
Inputs Perception Controls Debugging Collection
Line tracking, 4 .p A
Camera Flaature D(Ietection Wifi UDP Python
Data Command UDP
(50 Hz)
‘ - J
g \
Telemetry Wlfl UDP
Manual E-Stop Data Logglng
I (250 Hz)
-
Vel Conversion, Ve ™\
Encoder Median Filter . Command
Data Line
A J CSV Files to
generate
User Input plots

Berkeley

UNIVERSITY OF CALIFORNIA

Software features

- Extensive runtime configuration system to
avoid recompilation
- Enables fast testing of experimental
systems such as motion profiles, step
detection
- Easy camera recalibration
- Camera exposure, adaptive thresholds
all runtime configurable

- Commands to see camera input and N
statistics Each one of these values can be modified

at runtime with paramXX VALUE

Enter string "command value": cam
['cam', '0']
Enter string "command value": Reply[192.168.4.1:5555] - b'Log 8: XXXKXXXXXKXXXXXKXXXKXXXKXXXKXKXXXXXXXXXXXXXXXXXXXXK . . \n'!

Enter string "command value": camstat
['camstat', '©']
Enter string "command value": Reply[192.168.4.1:5555] - b'Log 9: min=660, max=809, median=736, thresh=687\n\n'

Enter string "command value": camexp 2048

['parami4', '2048']

Enter string "command value": cam

['cam', '0']

Enter string "command value": Reply[192.168.4.1:5555] - D'LOQ 10uuuininenenenenenenenenenenenenennnns b .0, S XXXXXX e veeeean 0,0 0,0 G e BT S At \n'

Enter string "command value": camstat
['camstat', '0']
Enter string "command value": Reply[192.168.4.1:5555] - b'Log 12: min=666, max=1808, median=976, thresh=1536\n\dﬂ

Update rates

- Main control loop: 50 Hz (20 ms)
- Encoder sampling: every 20 ms
- Line camera: variable, depending on exposure time

- Usually somewhere between every 1 ms-3ms (300-1000 Hz)

- Faster than control loop to reliably detect line features at high speed

- Wifi logging (UDP send): every 4 ms (250 Hz)

- Logging needs to be fast or telemetry will overload it!
- Wifi command receive: every 20 ms (50 Hz)

Berkeley

UNIVERSITY OF CALIFORNIA

'iming diagram

- TODO:
(Don't quite understand how to do the timing priority directions on this chart.)

Also needs to be redone in Powerpoint or GIMP and with wifi + logging tasks.

Wloosty | [Banrlc

v

Gl [t]

2 > Y Cms)

1
|
(oY 1

Figure 5: Software timing diagram.

Berkeley

UNIVERSITY OF CALIFORNIA

Controls - Overview

- What we used:
- Mostly just linear PD control
- Experimented with motion profiles w/ step detection,
didn’'t work well
- Stability Problems:
- Oscillatory on high speed steps -- overshoot one way
puts the car off track
- kP isn't high enough on some turns
- The compromise:
- Oscillations are okay as long as we still track!
- Wiggly but still following > not wiggly but not
following
- Lose points on oscillations but not on speed
- Jack up kP when we detect hard curves

Berkeley

UNIVERSITY OF CALIFORNIA

Controls - Implementation

Picking kP and kD
- Pick kP just high enough to track line reliably
- Pick kD to prevent severe overshoot resulting in derailment
- Leverage online configuration system to test tuned values

Error calculation
- Trust the line tracking subsystem
- Responsible for stop/offcourse detection
- And returning last known values if off course/can’t see line

Berkeley

UNIVERSITY OF CALIFORNIA

Gains

- Gains -- Velocity
- On real hardware, we used Kp =18 PWM units/(cm/s) and no Kd.
- Constant velocity was given to the simulation controller.
- Gains -- Steering
- See the below table for details.
- On detected hard curves, we ended up with a Kp = 92.5 deg/m and similar Kd to
the step response.
- Step response Gain Table:

Kp Kd Max Step Error | Sensed Vel Command Vel
Real 34.7 deg/m | 0.116 12.48 cm 250 m/s 250 m/s
deg/(m*s)
Simulation 400 deg/m 40 deg/(m*s) | 12.5 cm 276 m/s 280 m/s

Berkeley

UNIVERSITY OF CALIFORNIA

Step Lateral Error vs. Time

- Simulation:
X axis: time (s)
Y axis:
Camera scan + error (m)

- Real:
X axis: time (s)
Y axis: Camera scan +error (cm)

Berkeley

UNIVERSITY OF CALIFORNIA

Controls - Postmortem Analysis

Things that worked well:

Linear PD is okay especially at lower speeds
Controller generally strong at staying on the track

Things that could use improvement:

Steering output nonlinearity (especially at high speed)
- Consider arctan function like that Spl19 group?
Velocity control could be more even
- Velocity readings were inaccurate with actual car speeds
Difficult to tell in VREP at high speeds if a simulation car’s control is “acceptable”
or “oscillating”

Why was our car so hard to tune?

The PD constants were “floats” but were casted to integers. Oops.

Berkeley

UNIVERSITY OF CALIFORNIA

. essons Learnt

- Glitches, failures, debugging issues:

- Figuring out the timing for SI and Clock signals without an oscilloscope

(Checkpoint 4)

- Control loop timing being too slow (Race 2)

- Limited hours for debugging tracks outdoors (Race 2)

- PCNT Interrupt-timed velocity control isn't a suggestion -- it's a soft requirement
- What we wish we knew:

- Timing things -- FreeRTOS, priority scheduling, interrupts

- Not initially having an oscilloscope made things really hard

- Nonlinear PD tactics for higher speeds
- Some advice:

- Wouldn't recommend this class online -- it's already hard in person

- Test incrementally -- don't test your entire system in one go

- Try a lot of different things -- don't fixate on one potential solution

Berkeley

UNIVERSITY OF CALIFORNIA

Roles and Contributions

- Thiti Khomin
- 1. Initially prototyped the Sl and Clock signal timings and ADC read
timings
- 2. Initially prototyped the control loop structure
- 3. Finely tuned Kp and Kd values in the simulator for Race1 |
- 4. Chief cardboard shading engineer for Race 2
- Gavin Liu
- 1. Initially prototyped the line-detection algorithm and
cross-detection algorithm
- 2. Debugged the control loop timing and structure
- 3. Outdoor track testing for Race 2
- guinea wheek
- 1. Found a good place to mount the velocity sensor
- 2. Debugged the initial prototype for SI and Clock signals
- 3. Improved the line-detection and cross-detection algorithm
- 4. Ran car during most checkpoints

Berkeley

UNIVERSITY OF CALIFORNIA

Thank you!

