
EECS192 Oral Report

1

Thiti Khomin
Nareauphol Liu

guinea wheek

2

Presentation Overview
Outline

- Project overview

- Vehicle Hardware and Embedded Peripherals

- Line Sensor Algorithm

- Software

- Controls

- Lessons learned

- Roles and Contributions

3

Hardware Block Diagram/Overview

MCU

Line Scan

Line-arrayEncoder Count

Brushed
ESC

Sensors

MCU (ESP32)

Motor

Outputs

Servo

Input-Signal 1BInput-Signal 1A

Encoder

DC Motor RC Car
Battery

MCU
Battery

+5V

+7.2V

Speed Output Steering Output

Track Image (Input,
TSL1401CL)

Encoder
Wheel (Input)

+7.2V

4

Car Photos

5

Velocity Encoder Design - Mount
- Initial mounting plan:

- Mount encoder disc to inside of wheel, mount sensor with tape
- Would have to deal with car suspension, generally bad idea

- Final mounting plan:
- Mount encoder disc to drive gear with superglue, mount sensor with tape
- Much easier to implement/more stable
- Tape blocks out excess light (common issue)

Encoder
behind tape

6

Velocity Encoder Design - Shielding

Excess light == skipped counts
Solution: shielding!

7

Velocity Encoder Design - Disc
- Encoder discs:

- Hand cut and shaded
- Superglued to main drive gear

- Tested variety of encoder disc designs:
- 8-disc

- Too few counts
- 12-disc

- Perfect compromise
- 16-disc

- Sections too small

Left to right: 8-disc, 12-disc, 16-disc

8

Velocity Sensor - Results
- Hardware was good!

- Most reliable hardware part of project
- Software was lacking

- 10-20 ms too short of a period
- Only ~25-50 cm/s velocity resolution
- Time/frequency tradeoff (thanks Nyquist)

- Future work: use GPIO interrupts + GPTIMER peripheral timing based
approach, to measure time between ticks

9

Velocity Sensor - Reading
- Used sampling approach

- Every 20 ms, check pulse counter value
- # of cycles / sample converted to cm/s

- Timer subsystem used for sampling interrupts
- Pulse counter for encoder counts
- Velocity passed through 3 point median filter

SensorTimer Sampling
task PCNT

Timer
interrupt

Edge
counts

Total
counts

VelocityMedian
Filter

10

Line sensor - Mounting
- Used provided mount at highest point and angle

available
- Mount is unfortunately quite flimsy

- Needs constant checking!

11

Other misc onboard hardware
- Timers:

- Derivative error calculation
- Telemetry logging
- Busywait loops in line sensor reading

- MCPWM:
- Drives the ESC and servo inputs
- Servo is powered from ESC

- Wifi peripherals:
- Communications between driver station and robot

12

Line sensor - Reading Data

vo
lt

ag
e

vo
lt

ag
e

Old exposure
~2ms

New exposure
~128 µs

- Control signals (SI, CLK) bit-banged through
GPIO

- (TSL1401CL has ADC “SPI” protocol with exposure
dependent on clock frequency)

- Data read through ADC
- Initial strategy:

- Fire SI, clock and read 128 times, repeat
- Fixed exposure time of ~2ms
- Doesn’t work outdoors

- Final strategy:
- Fire SI twice, read the 2nd time

- Fast clocking for exposure + discard
garbage, then read out data

- Can do exposure times of <256 ns
- Works outdoors*

(*only in shade, not direct sunlight)

13

Line detection - Thresholding
- 85% of maximum detected value AND greater than fixed min cutoff

- Cutoff is usually zero in practice
- Simple yet effective

14

Line detection - Crossing Rejection
- Line algorithm organizes thresholded segments into “blobs”

- Blob closest to previous line is likely the line
- Center of blob is the line
- Blob position used for stop detection
- If no blobs, then guess the last position
- Blobs have a minimum width

Time (each slice is 50ms)

Li
n
es

ca
n
 p

ix
el

s

15

Block Diagram for Software

Camera
Data

Command
Line

Encoder
Data

Physical
Inputs

Image
Analysis

(300Hz -1KHz)

Velocity
Task

(50 Hz)

Perception Planning and
Controls

PD Steering
Controller
(50 Hz)

PD Velocity
Controller
(50 Hz)

Line tracking,
Feature Detection

Vel Conversion,
Median Filter

Debugging

Wifi UDP
Logging
(250 Hz)

Wifi UDP
Command

(50 Hz)

Manual E-Stop

Data
Collection

Python
UDP

CSV Files to
generate
plotsUser Input

Telemetry
Data

16

Software features
- Extensive runtime configuration system to

avoid recompilation
- Enables fast testing of experimental

systems such as motion profiles, step
detection

- Easy camera recalibration
- Camera exposure, adaptive thresholds

all runtime configurable
- Commands to see camera input and

statistics Each one of these values can be modified
at runtime with paramXX VALUE

17

Update rates
- Main control loop: 50 Hz (20 ms)
- Encoder sampling: every 20 ms
- Line camera: variable, depending on exposure time

- Usually somewhere between every 1 ms-3ms (300-1000 Hz)
- Faster than control loop to reliably detect line features at high speed

- Wifi logging (UDP send): every 4 ms (250 Hz)
- Logging needs to be fast or telemetry will overload it!

- Wifi command receive: every 20 ms (50 Hz)

18

Timing diagram
- TODO:
- (Don’t quite understand how to do the timing priority directions on this chart.)
- Also needs to be redone in Powerpoint or GIMP and with wifi + logging tasks.

19

Controls - Overview
- What we used:

- Mostly just linear PD control
- Experimented with motion profiles w/ step detection,

didn’t work well
- Stability Problems:

- Oscillatory on high speed steps -- overshoot one way
puts the car off track

- kP isn’t high enough on some turns
- The compromise:

- Oscillations are okay as long as we still track!
- Wiggly but still following > not wiggly but not

following
- Lose points on oscillations but not on speed

- Jack up kP when we detect hard curves

20

Controls - Implementation
- Picking kP and kD

- Pick kP just high enough to track line reliably
- Pick kD to prevent severe overshoot resulting in derailment
- Leverage online configuration system to test tuned values

- Error calculation
- Trust the line tracking subsystem

- Responsible for stop/offcourse detection
- And returning last known values if off course/can’t see line

21

Gains
- Gains -- Velocity

- On real hardware, we used Kp = 18 PWM units/(cm/s) and no Kd.
- Constant velocity was given to the simulation controller.

- Gains -- Steering
- See the below table for details.
- On detected hard curves, we ended up with a Kp = 92.5 deg/m and similar Kd to

the step response.
- Step response Gain Table:

Kp Kd Max Step Error Sensed Vel Command Vel

Real 34.7 deg/m 0.116
deg/(m*s)

12.48 cm 250 m/s 250 m/s

Simulation 400 deg/m 40 deg/(m*s) 12.5 cm 276 m/s 280 m/s

22

Step Lateral Error vs. Time
- Simulation:

X axis: time (s)
Y axis:
Camera scan + error (m)

- Real:
X axis: time (s)
Y axis: Camera scan +error (cm)

23

Controls - Postmortem Analysis
- Things that worked well:

- Linear PD is okay especially at lower speeds
- Controller generally strong at staying on the track

- Things that could use improvement:
- Steering output nonlinearity (especially at high speed)

- Consider arctan function like that Sp19 group?
- Velocity control could be more even

- Velocity readings were inaccurate with actual car speeds
- Difficult to tell in VREP at high speeds if a simulation car’s control is “acceptable”

or “oscillating”
- Why was our car so hard to tune?

- The PD constants were “floats” but were casted to integers. Oops.

24

Lessons Learnt
- Glitches, failures, debugging issues:

- Figuring out the timing for SI and Clock signals without an oscilloscope
(Checkpoint 4)

- Control loop timing being too slow (Race 2)
- Limited hours for debugging tracks outdoors (Race 2)
- PCNT Interrupt-timed velocity control isn’t a suggestion -- it’s a soft requirement

- What we wish we knew:
- Timing things -- FreeRTOS, priority scheduling, interrupts
- Not initially having an oscilloscope made things really hard
- Nonlinear PD tactics for higher speeds

- Some advice:
- Wouldn’t recommend this class online -- it’s already hard in person
- Test incrementally -- don’t test your entire system in one go
- Try a lot of different things -- don’t fixate on one potential solution

25

Roles and Contributions
- Thiti Khomin

- 1. Initially prototyped the SI and Clock signal timings and ADC read
timings

- 2. Initially prototyped the control loop structure
- 3. Finely tuned Kp and Kd values in the simulator for Race 1
- 4. Chief cardboard shading engineer for Race 2

- Gavin Liu
- 1. Initially prototyped the line-detection algorithm and

cross-detection algorithm
- 2. Debugged the control loop timing and structure
- 3. Outdoor track testing for Race 2

- guinea wheek
- 1. Found a good place to mount the velocity sensor
- 2. Debugged the initial prototype for SI and Clock signals
- 3. Improved the line-detection and cross-detection algorithm
- 4. Ran car during most checkpoints

Thank you!

26

