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Hardware Block Diagram/Overview
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Car Photos
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Velocity Encoder Design - Mount
- Initial mounting plan:

- Mount encoder disc to inside of wheel, mount sensor with tape
- Would have to deal with car suspension, generally bad idea

- Final mounting plan:
- Mount encoder disc to drive gear with superglue, mount sensor with tape
- Much easier to implement/more stable
- Tape blocks out excess light (common issue)

Encoder 
behind tape
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Velocity Encoder Design - Shielding

Excess light == skipped counts
Solution: shielding! 
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Velocity Encoder Design - Disc
- Encoder discs:

- Hand cut and shaded
- Superglued to main drive gear

- Tested variety of encoder disc designs:
- 8-disc

- Too few counts
- 12-disc

- Perfect compromise
- 16-disc

- Sections too small 

Left to right: 8-disc, 12-disc, 16-disc
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Velocity Sensor - Results
- Hardware was good!

- Most reliable hardware part of project
- Software was lacking

-  10-20 ms too short of a period
- Only ~25-50 cm/s velocity resolution 
- Time/frequency tradeoff (thanks Nyquist)

- Future work: use GPIO interrupts + GPTIMER peripheral timing based 
approach, to measure time between ticks
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Velocity Sensor - Reading
- Used sampling approach

- Every 20 ms, check pulse counter value
- # of cycles / sample converted to cm/s

- Timer subsystem used for sampling interrupts
- Pulse counter for encoder counts
- Velocity passed through 3 point median filter

SensorTimer Sampling 
task PCNT 

Timer 
interrupt

Edge 
counts

Total 
counts

VelocityMedian 
Filter
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Line sensor - Mounting
- Used provided mount at highest point and angle 

available
- Mount is unfortunately quite flimsy

- Needs constant checking!
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Other misc onboard hardware
- Timers:

- Derivative error calculation
- Telemetry logging
- Busywait loops in line sensor reading

- MCPWM:
- Drives the ESC and servo inputs
- Servo is powered from ESC

- Wifi peripherals:
- Communications between driver station and robot
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Line sensor - Reading Data
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- Control signals (SI, CLK) bit-banged through 
GPIO 

- (TSL1401CL has ADC “SPI” protocol with exposure 
dependent on clock frequency)

- Data read through ADC
- Initial strategy:

- Fire SI, clock and read 128 times, repeat
- Fixed exposure time of ~2ms
- Doesn’t work outdoors

- Final strategy:
- Fire SI twice, read the 2nd time

- Fast clocking for exposure + discard 
garbage, then read out data

- Can do exposure times of <256 ns
- Works outdoors* 

(*only in shade, not direct sunlight)
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Line detection - Thresholding
- 85% of maximum detected value AND greater than fixed min cutoff 

- Cutoff is usually zero in practice 
- Simple yet effective
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Line detection - Crossing Rejection
- Line algorithm organizes thresholded segments into “blobs”

- Blob closest to previous line is likely the line
- Center of blob is the line
- Blob position used for stop detection
- If no blobs, then guess the last position
- Blobs have a minimum width

Time (each slice is 50ms)
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Block Diagram for Software 
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Software features
- Extensive runtime configuration system to 

avoid recompilation
- Enables fast testing of experimental 

systems such as motion profiles, step 
detection

- Easy camera recalibration
- Camera exposure, adaptive thresholds 

all runtime configurable
- Commands to see camera input and 

statistics Each one of these values can be modified 
at runtime with paramXX VALUE
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Update rates
- Main control loop: 50 Hz (20 ms)
- Encoder sampling: every 20 ms
- Line camera: variable, depending on exposure time

- Usually somewhere between every 1 ms-3ms (300-1000 Hz)
- Faster than control loop to reliably detect line features at high speed

- Wifi logging (UDP send): every 4 ms (250 Hz)
- Logging needs to be fast or telemetry will overload it!

- Wifi command receive: every 20 ms (50 Hz)
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Timing diagram
- TODO: 
- (Don’t quite understand how to do the timing priority directions on this chart.)
- Also needs to be redone in Powerpoint or GIMP and with wifi + logging tasks.
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Controls - Overview
- What we used:

- Mostly just linear PD control
- Experimented with motion profiles w/ step detection, 

didn’t work well
- Stability Problems: 

- Oscillatory on high speed steps -- overshoot one way 
puts the car off track

- kP isn’t high enough on some turns 
- The compromise:

- Oscillations are okay as long as we still track!
- Wiggly but still following > not wiggly but not 

following
- Lose points on oscillations but not on speed

- Jack up kP when we detect hard curves



20

Controls - Implementation
- Picking kP and kD

- Pick kP just high enough to track line reliably
- Pick kD to prevent severe overshoot resulting in derailment
- Leverage online configuration system to test tuned values

- Error calculation
- Trust the line tracking subsystem

- Responsible for stop/offcourse detection
- And returning last known values if off course/can’t see line
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Gains
- Gains -- Velocity

- On real hardware, we used Kp = 18 PWM units/(cm/s) and no Kd.
- Constant velocity was given to the simulation controller.

- Gains -- Steering
- See the below table for details.
- On detected hard curves, we ended up with a Kp = 92.5 deg/m and similar Kd to 

the step response.
- Step response Gain Table: 

Kp Kd Max Step Error Sensed Vel Command Vel

Real 34.7 deg/m 0.116 
deg/(m*s)

12.48 cm 250 m/s 250 m/s

Simulation 400 deg/m 40 deg/(m*s) 12.5 cm 276 m/s 280 m/s
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Step Lateral Error vs. Time
- Simulation: 

X axis: time (s)
Y axis: 
Camera scan + error (m)

- Real: 
X axis: time (s)
Y axis: Camera scan +error (cm)
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Controls - Postmortem Analysis
- Things that worked well:

- Linear PD is okay especially at lower speeds
- Controller generally strong at staying on the track

- Things that could use improvement:
- Steering output nonlinearity (especially at high speed)

- Consider arctan function like that Sp19 group?
- Velocity control could be more even

- Velocity readings were inaccurate with actual car speeds
- Difficult to tell in VREP at high speeds if a simulation car’s control is “acceptable” 

or “oscillating”
- Why was our car so hard to tune?

- The PD constants were “floats” but were casted to integers. Oops.



24

Lessons Learnt
- Glitches, failures, debugging issues: 

- Figuring out the timing for SI and Clock signals without an oscilloscope 
(Checkpoint 4) 

- Control loop timing being too slow (Race 2) 
- Limited hours for debugging tracks outdoors (Race 2) 
- PCNT Interrupt-timed velocity control isn’t a suggestion -- it’s a soft requirement

- What we wish we knew: 
- Timing things -- FreeRTOS, priority scheduling, interrupts
- Not initially having an oscilloscope made things really hard
- Nonlinear PD tactics for higher speeds

- Some advice: 
- Wouldn’t recommend this class online -- it’s already hard in person 
- Test incrementally -- don’t test your entire system in one go
- Try a lot of different things -- don’t fixate on one potential solution
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Roles and Contributions
- Thiti Khomin 

- 1. Initially prototyped the SI and Clock signal timings and ADC read 
timings

- 2. Initially prototyped the control loop structure
- 3. Finely tuned Kp and Kd values in the simulator for Race 1 
- 4. Chief cardboard shading engineer for Race 2

- Gavin Liu 
- 1. Initially prototyped the line-detection algorithm and 

cross-detection algorithm
- 2. Debugged the control loop timing and structure  
- 3. Outdoor track testing for Race 2

- guinea wheek 
- 1. Found a good place to mount the velocity sensor
- 2. Debugged the initial prototype for SI and Clock signals 
- 3. Improved the line-detection and cross-detection algorithm
- 4. Ran car during most checkpoints
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